結晶化で機能向上?

200種以上から厳選したプラズマで処理を行います



プラスチックには大きく分けて結晶性プラスチックと非晶性プラスチックがありますが
ポリマー分子の熱運動に大きく関係して固有性が急変する転移温度が存在します。
転移温度には、ガラス転移温度、結晶融点、結晶化温度などがありますが
日刊工業新聞のセミナーにはこうありました。

長い分子からできている高分子は,分子の集まり方が密な部分(結晶部分)と疎の部分(非結晶部分)とがある。高分子の強度は結晶部分の存在に基づくものであり,非結晶部分は柔軟性や水分などの低分子の吸着に役立っている。
 プラスチックや繊維は一般に結晶性を有しているが,結晶構造を形成するには高分子間に水素結合など一定の分子間力が必要である。高分子内の結晶部分の量や微細構造はX線回折により測定される。
 他方,ゴム(エラストマー)には結晶構造がなく非結晶部分のみであるため大きな伸長性を示し,分子のすり抜けを防ぐ橋架け構造によって構造を維持している。

 高分子も低分子と同じように熱運動をしており,温度の上昇により運動性が大きくなる。結晶性高分子の加熱・加温により結晶部分がこわれて流動性を示すようになるのが高分子の融解で,この温度を融点 Tm,明確な温度でないなどのため,一般の融解と区別する場合が多い。高分子によっては融解せず,熱分解したり硬化したりするものもある。
 非結晶部分も,温度が低いと分子運動性が低く(ガラス状態と呼ぶ),温度が上がると運動性が大きくなる(ゴム状態)。その境目をガラス転移点 Tg という。ガムベースに用いられているポリ酢酸ビニルの Tg は体温付近であり,低温では固いガムを口の中で噛むと柔らかくなるのがガラス転移現象の身近な例である。また適当な低分子(可塑剤)を混入させることにより Tg を低下させる場合もある。
 以下に,代表的な高分子の融点・ガラス転移点を示す。これらの値は高分子の分子量や結晶部分の量(結晶化度)などにより若干変化する。(参照:生活環境化学の部屋)


  広幅2500mmまで処理が可能でクリーンルーム環境
MSR プラズマをお試しください!
親水化・濡れ性改善
MSRプラズマの強み
プラズマ洗浄
無料サンプル
材料の世界革命
ダイン数調整
密着・接着力アップ
有効期間
プラズマいろいろ
接合
プラズマラミネート
コロナ処理、プラズマ処理違い
 
 
 
 
 
 
 
 
表面研磨
結晶化
粗面加工
脱脂処理
部分処理
ポーラス加工
油膜洗浄
立体物をプラズマ
繊維・膜を親水化
干渉縞が消える
ナノ&プラズマ
電荷処理
チューブプラズマ
メッシュを親水化
不織布を親水化
発泡体を親水化
糸、紐、組紐 
親水化